
How to generate p-codes

(chapter in COD Evaluation and candidate creation from ITOS)

As a general rule, ITOS doesn’t generate p-codes. However, if the case is very clear, the datasets are

clean and we are given guidance to do so in rare cases we can. This document describes the procedure

we have in place to do this.

You will likely have already determined that there are no egregious errors that must be addressed

before generating p-codes. For that reason, this document assumes you will be geocoding a feature

class stored in the working gdb, but it will work equally well for shapefiles or other data schemas.

1. Sort the data by both the name and by the lowest p-coded field that you will use to build new p-

codes. For example, if you are generating p-codes for an admin3 feature class, you will sort the

data by the admin3name_xx field, and by the admin2P-code field. These fields must already

exist in the same feature class that you are generating p-codes for. In this example, we will

generate p-codes for populated places, and we will build those p-codes off of the admin4 p-

codes that exist in a field in the populated places feature class.

a. Open ArcMap and load the dataset you want to generate p-codes for

b. Open ArcToolbox ->Data Management Tools->General->Sort

c. Create an output dataset and sort by the lowest admin p-code first, and then by

feature name, both ascending. This will alphabetize your features by the feature

name and assign new FIDs in alphabetic order.

d. Double check that the admin names are sorted alphabetically, and within each

admin4 group, the feature names are sorted alphabetically.

https://drive.google.com/file/d/0B6MPbyrqHBYXLVlETDlvMXZBVXM/view

~~

2. Use the field calculator to assign p-codes.

a. Right click on the p-code field and choose Field Calculator.

b. Choose the Python Parser

c. Load the SequenceNumberByAdmin.cal file

d. In the calculator, change the autoIncrement to run over the lowest admin that you are

building p-codes off of.

 ->

e. The results should look like this:

~~

f. The script is set up to create a 2 digit p-code appended to the p-code of the lowest

admin unit. If there are many more features, that is, if for any given admin4 level, you

anticipate having over 99 or over 999 features then you need to modify the code.

Specifically, the return string should be lengthened. The current version:

rec=0
admin = '00'
def autoIncrement(currentAdmin):
 global rec
 global admin
 pStart = 1

 pInterval = 1
 if (rec == 0 or currentAdmin <> admin):
 rec = pStart
 admin = currentAdmin
 else:
 rec += pInterval
 return admin + str(rec).zfill(2)

To create a 3 digit pocode counter, increase the zfill to 3:

return admin + str(rec).zfill(3)

