

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Measures for assessing the data freshness in Open Data portals

Sebastian Neumaier and Jürgen Umbrich Vienna University of Economics and Business

Problem/Challenge

- How up-to-date are resources in Open Data portals?
- Required information for such a metric:
 - Change history of documents in portals
- Challenge:
 - 1. Collect available change history
 - 2. Estimated next change time to assess up-to-dateness
- Two scenarios:
 - *Portal provider*: wants to add freshness measure to metadata
 - Data consumer: updating of application, DB, etc..

Open Data Portals

- Single point of access
- Local and external resources
- Meta data
 - Title
 - Modification date
 - ...

Typical software:

Sources of change information in OD portals

- **Push-based** history:
 - Data provider push change information to portal
 - If *local*, by uploading new version
 - If *external*, by updating a specific metadata field
 last_modified: "2013-09-25T00:00:00"
- Pull-based history:
 - Age sampling:
 - Access to latest change time of a resource (i.e., last-modified timestamp in *HTTP Header*)

```
Last-Modified: Mon, 04 Nov 2013 13:00:08 GMT
ETag: "21096456bff7d72268dc99b3bf082565"
```

- Comparison sampling:
 - Detect changes by monitoring and comparing the resources

Open Data Portal Watch

http://data.wu.ac.at/portalwatch/

- Periodically monitoring over 260 Open Data portals
- Metadata quality assessment
 - Uniform handling of metadata (using DCAT mapping)
- Evolution tracking & archiving
 - Meta data
 - Data

≡	Open Data Portal Info Portals	API Quality Measures A	About
	Portal List containing 261 portals		
	Q Filter		
	SORT BY URL SORT BY ISO3 SORT BY SOFTWARE SORT BY #DATASETS SORT BY #RESOURCES		
	http://opendata.paris.fr.opendatasoft.com		
	SEE PORTAL DETAILS		
	http://datos.argentina.gob.ar/		
	SEE PORTAL DETAILS		

Available change information

- CKAN: age- and comparison-sampling required
- Socrata & OpenDataSoft: push-based possible

Local vs external resources on CKAN

- 130 CKAN portals:
 - 27 portals host all resources externally, 9 all locally
 - Majority of all URLs (~88%) belong to 54 portals with <25% local resources
 - HDX portal: 9574 URLs, 8833 distinct, 2114 local (~24%)

external					local	
ratio	0	< 0.25	< 0.5	< 0.75	< 1	1
p % of $ r $	27 5.76%	54 88.48%	9 0.38%	7 0.05%	27 1.12%	9 4.21%

Estimation of next updates

- Evaluating three change estimation heuristics:
 - Poisson process
 - Cho and Garcia-Molina (2003) propose Poisson process model to estimate updates in the context of Web sites
 - Markov chain approach
 - Umbrich et al. (2015) use Markov chains to schedule next crawl times for URLs based on previous observed changes
 - Empirical distribution
 - Build empirical distribution of changes based on intervals

Estimation of next updates (cont'd)

Age sampling

(last-modified timestamp in HTTP Header)

- Poisson distribution
 - $X/T \ (= \frac{number \ of \ changes}{monitoring \ period})$ as estimator for Poisson parameter
 - Compute next change time by considering *p*-quantiles
- Empirical distribution
 - Use intervals between the observed last-modified times
 - *p*-quantiles of empirical distribution

- Markov chain approach
 - Probability of next change based on previous state, e.g.:

 Extend approach by considering the last k states for computing the probabilities:

i \i+1	1	0	TOTAL
00	2	1	3
01	1	1	2
10	1	1	2
11	0	1	1

P(1|00) = 2/3

Evaluation Summary

Controlled environment:

- Evaluation using revision histories of Wikipedia articles
 - 1562 randomly Wiki articles with >3 years history and >30 revisions
 - Wiki change history does not follow Poisson distribution
- Different confidence values:
 - For fixed p, we report the ratio of successfully predicted updates
- Conclusion:
 - Markov chain approach best for comparison-based sampling
 - Empirical distribution best for pushbased and age-based sampling

COMPARISON SAMPLING RESULTS.								
Estimator	Estimator All		Regular		Irregular			
p = 0.7 S = 10d								
$C_{EmpDist}$ $C_{ChoNaive}$ $C_{ChoImpr}$	0.59 0.67 0.66	40d 36d 35d 42d	0.66 0.67 0.62	40d 35d 34d 41d	0.60 0.63 0.61	90d 83d 82d 96d		
p = 0.7 S = 50d								
$egin{array}{c} C_{EmpDist} \ C_{ChoNaive} \ C_{ChoImpr} \ C_{UmbMarkov} \end{array}$	0.54 0.65 0.27 0.58	40d 37d 43d 39d	0.57 0.36 0.31 0.59	40d 40d 36d 40d	0.57 0.63 0.47 0.68	84d 78d 76d 82d		
p = 0.9 S = 10d								
$egin{array}{c} C_{EmpDist} \ C_{ChoNaive} \ C_{ChoImpr} \ C_{UmbMarkov} \end{array}$	0.81 0.71 0.57 0.88	66d 38d 36d 84d	0.87 0.70 0.66 0.94	70d 37d 35d 85d	0.80 0.67 0.60 0.90	145d 85d 83d 184d		

Thank you for your attention

Goal

VIENNA UNIVERSITY OF CONOMICS AND BUSINESS

- Data Freshness estimation in Open Data
- Challenge
 - Collecting change history (push vs pull)
- Approach
 - Estimators for different scenarios
 - Empirical evaluation

Sebastian Neumaier WU Vienna, Institute for Information Business

email: sebastian.neumaier@wu.ac.at url: https://sebneumaier.wordpress.com/ twitter: @sebneum

